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SCATTERING OF HYDROACOUSTIC WAVES BY A 
NARROW CRACK IN AN ELASTIC PLATE? 

I. V. A N D R O N O V  a n d  B. P. B E L I N S K I I  

st Petersburg 
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The scattering of waves by an infinite elastic plate, which covers an acoustic half-space and is weakened by a crack in the form 
of an  inf ini te ly  long cut of finite width with parallel edges is considered. The scattered field is expressed in terms of the solution 
of an integro-algebrak: system of equations on the crack. The logarithmic characteristic of the kernel enables Bubnov's method 
with a basis containing Chebyshev polynomials of the first kind to be used for the numerical analysis. Particular attention is given 
to the asymptotic investigation of the scattering diagram and the amplitudes of the surface waves for a narrow crack and a thin 
plate. A comparison with the well-known model of a point crack enables the range of parameters of the problem where the point 
model is applicable to be indicated. © 1997 Elsevier Science Ltd. All fights reserved. 

The scattering of acoustic waves by an elastic plate, weakened by one or more point cracks, was con- 
sidered previously in [1, 2]. Scattering by a plate reinforced with point ribs has been considered by many 
researchers. An explicit form of the solution has been obtained [3] and a numerical analysis of the 
effective scattering cross-section has been carried out. A review of foreign research devoted to low- 
frequency scattering by plates with inhomogeneities can be found in [4]. More-complex scattering 
problems can be reducod to integral equations [5] which can then be investigated asymptotically. 

In all the models of plates with point inhomogeneities the problem arises of the conditions of appli- 
cability. An analy~is of the possibility of replacing actual inhomogeneities by point models is essential. 
The problem of .~.attering by a low protruding rib was investigated in [6] and the conditions of 
applicability were obtained for the point-rib model. 

Below we establish that certain features of the field scattered by a narrow crack are not  reproduced 
in the point model. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

We will consider a system consisting of a homogeneous acoustic half-space {y > 0}, bounded by a 
thin elastic plate {Ix l > a,y = 0} with a crack {Ix I < a}. The field in the system is described by the 
Helmholtz equation 

AU+k2U=O, y > 0  (1.1) 

The time dependence is taken in the form exp (-/tot). The oscillations of the plate are described by 
Kirchhoff's model [7] 

d~ ~ 
D ~ T -  p(02hJ~ + U = 0, I ~U Eh3 (1.2) 

y = 0 ,  Ixl>a; ~=p0o) 2 -~y v=0' D= 12(1_G2) 

Here ~ is the buckle of the plate, D is the cylindrical stiffness of the plate, E is Young's modulus, o is 
Poisson's ratio, h is the plate thickness, and P and 130 are the density of the plate and the acoustic medium. 

The contact conditions on the crack edges express the fact that there are no shear forces and bending 
moments, and have the form 

dn~ 
dx n (_+a) = O, n = 2,3 (1.3) 
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Dirichlet's condition 

U = 0 ,  y = 0 ,  t x l < a  (1.4) 

is satisfied on the crack. 
Meixner's conditions are imposed at the points {x = +.a,y = 0}, which guarantees that the energy 

in the acoustic medium is finite. 
The wave field is excited by a certain spatial wave incident from the half-space, or a surface wave 

travelling along the plate from infinity. The field U s, which would occur if there was no crack, can easily 
be obtained. When a plane wave 

U i = exp(ik(x cos ~0 0 - y sin tp0 )) 

is incident, it consists of incident and reflected waves 

U g = U i + R(~Po) exp(ik(x cos ¢P0 + Y sin ~0 0)) 

R(<Po) =-L(cp°) L(CPo)=iksincPo(k4 cos4 q~ o-k~)+ v, k~ = ph°J2 P°¢°2 
L( )---~0-' D ' V = ~ D  

(1.5) 

(1.6) 

Here  the bar denotes the complex conjugate, and we have introduced standard notation [1]. 
The correction to O g will be called the scattered field. The scattered field U s = U -  U s will satisfy the 

radiation condition, i.e. it should not contain arriving waves. As will be shown below, at considerable 
distances from the crack the scattered field consists of  a diverging cylindrical wave and two surface waves, 
concentrated close to the plate. The purpose of  this paper is to construct the field U a. We will assume 
that the crack width is small compared with the wave length of the incident field. 

2. R E D U C T I O N  OF T H E  P R O B L E M  TO I N T E G R A L  E Q U A T I O N S  

We will introduce Green's  function G of the boundary-value problem for a homogeneous plate 

( A + k 2 ) G = - ~ ( X - X o ,  Y -Yo)  

Then, using the second Green's formula we can obtain a representation for the scattered field 

i ~U(x,O) -U~(Xo,Yo) = G(x,O, xo ,Yo) - - - - -~ydX+ D~(a)G~.~,(a,O, xo,Yo)-  (2.1) 
- - t l  

-D~(-a)Grx~, ~ ( -a ,  0, x 0, Yo ) - D~x (a)Gyxx (a, 0, x 0, Yo) + D~, (-a)G,.,~ (-a,  O, x o, Yo ) 

(derivatives are denoted by the appropriate subscripts). 
Hence, if we know the normal derivative of  the total field •(x) -- 3U(x, 0)/~y on the crack, and we 

know the overall displacements ~(+-a) and the angles of  rotation ~ ( _ a )  of the plate edges, the scattered 
field U s can be calculated from (2.1). This field automatically satisfies Eqs (1.1) and (1.2) and the 
radiation condition for arbitrary ~(x), ~( +-a ) and ~ (  _+a ). Boundary condition (1.4) and contact conditions 
(1.3) lead to a system of equations in the function O(x) and the constants ~(-+a) and ~(--.a) 

i G(x, O, x o, Yo )t~(x)dx + D~(a)Gv.u x (a, 0, x, x 0 , 0) - D~(-a)G>.~ ( -a ,  0, x, x 0, 0) - 
- - t /  

-D~x(a)Gr~(a,O, xo,O)+ D~x(-a)Gyxx(-a,O, xo,O)= U~(xo,O), - a  < x o < a 
(2.2) 
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xo,O) c~(x)dx+~(a) O G(a,O,_(a+O),O) D:a~n+'G(x,O, 5+" + 

~. , bS+nG(-a,O,+(a+O),O) 
-q t-a ) 

+~x(-a) 

 y yo x%x  
O4+nG(-a, 0 4" (a + 0) ,0)  

~x (a) b4+nG(a' O, +-(a + 0), O) + 

OyOyo~x2Ox~ 

=V'xn  ~g(-I-a), n=2,3 

(2.3) 

The class of functiions within which the solution ~(x) must lie is determined by the Meixner conditions 

*(x)=O((x-T-a)6-1), 8 > 0  

The operator of the integro-algebraic system (2.2), (2.3) is expressed ha terms of Green's function 
G(x,y, xo, Yo). This Green's function is well known and can be obtained by the Fourier method. On the 
boundary (y = 0} we obtain for the traces G and 3G/~yo 

[~4 _ k 4 \  
G(x'O'xo' Y0 ,=  ~ ~T exp(i~'(X-Xo)- ~'~ -kZ Yo ) [ -l("~) ° } d~, (2.4) 

aTt (2.5) G, (x,O, xo, Y0) = _...v_v2~_. +[* exp(ik, x - X o ) -  ~-~- k 2 Yo )1(~.) 

(1(~,) = (~,4 _k40)af-~_k 2 _ V) 

The zeros of the fimetion l(E) at the points k = __.x are circumvented by the integration contour below 
and above, respectively. 

To calculate the higher-order derivatives, which occur ha the integro-algebraic system, we need to 
regularize the integrals, which can be done by methods which are standard for the theory of boundary- 
contact problems [2]. The integrand ha the representation of the kernel (2.4) for large 2~ will be 
O(1/I 2~ [) and hence the kernel of integral equation (2.2) has a logarithmic singularity. It can be shown 
that the remaining functions involved ha the system are bounded. 

3. N U M E R I C A L  P R O C E D U R E  

By introducing the new unknowns 

[~xl_ pore-_ 2(~(a) ~(_:- ] {~x} = p 0 ( 0 2 ( ~ ( a ) + ~ r a )  1 ~ "~x ~ ~xa)) ' ~-'~x 
[~] = p 0 o 2 ( ~ , ( a ) -  ~ ( -a ) ) ,  {~} = p0(0 2 (~(a)  + ~ ( - a ) )  

system (2.2), (2.3) c~n be rewritten ha symmetrical form. When carrying out the numerical procedure this 
enables the system to be split into two, corresponding to the parts of the field that are even and odd ha x. 

We will use Bubnov's method [8] for the numerical analysis. It is convenient to choose Chebyshev 
polynomials of the first kind Tp(x/a), divided by the square root ~/(a 2 -x2), as the basis. This basis is the 
basis of the eigenfunctions of the integral operator of the first kind with a logarithmic kernel [9]. 

We expand the timction O(x) ha series (everywhere henceforth, unless otherwise stated, summation 
is carried out from p = 0 to p = **) 

Tp (x / a) (3.1) 

then substitute hate, the system and project the integral equation onto Tq(x/a). As a result we obtain two 
infinite algebraic systems for determining the coefficients of expansion (3.1) and the constants [~], {~}, 
[~] and {~}. For brevity we will only give the system corresponding to the part of the field that is even inx 

~, m2p2q~2 p + n2q[~ x ] + C2q {~} = U2q, q = 0,1 .... 
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~ B2P(~2P + D° + E° [~'~ ] - ~  {~} =-D (~(a>+ ~ 

- D Y. C2pt~2p-~[~x] 02-~ E2 {~}=-~-(~xxx(a)- (-a)) (3.2) 

The elements of the matrices of these systems are expressed by double integrals over a square 
--a < x < a, -a < t < a, or after substitution of the representation for the kernel and evaluation the 
integrals with respect to x and t, by integrals along the semiaxis 

+** ~4 b4 
Apq = iP+qlt S J p ( a ~ . ) J q ( a ~ ) ~ d ) ~  

0 
+** ,~2 +** "~7 

B2p =(-I)p+I S J2p(a~,)cos(a~,)-~d~,, B2p+l =(-1)P+~ ~ J2p+i(a~,)sin(a~,)-~d~ (3.3) 
o o 

C2p =( - l )  p ~ J2p(a~,)sin(ak)~-~)d2,, C2p+~ =(-1) p ~ J2p+~(a~,)cos(a~,)~dZ, 
0 ) 0 

= l - ~ - + J * * I ~ - k 2 + I  [ (iL)'dL, j = 0 , 2  (3.4) Dj 2re _** lO.) 

1 ~ e21axlk 0 3f-~_kZ Ey=~--~_** [ v +I d~., j =0,I,2 

To justify the truncation method we will estimate the behaviour of the elements of matrix (3.3) with 
respect to numbers. To do this we calculate the asymptotic form I/l X I of the symbol (X 4 - k~)/l(X) at 
 anity 

Apq =iP+q~"~ -q + I Jp(a~,)Jq(a~)| ark p + q > 0  (3.5) 
212P 0 I 7('-L)- ' 

(8 q = 1 whenp = q and 8 q = 0 whenp # q). Estimates of the integrals (3.5) can be obtained in a 
• Y .  . • • . • , • 

slmdar way [10] with additional conslderaUon of the contribution of the pole at the point ~ = ~. We 
will give the final expression 

(p,q,)-3l(p+q+4) 1+12 / (3.6) 

The limit (3.6) enables us to conclude that for each fixed p the sum of the off-diagonal elements 
SF = Y-~pl AM I is finite and decreases as p increases. Similar limits for the integrals Bp and C~, 
show that Y-,I Bt, I and El Cp I are finite. These properties of the matrix prove that the tnmcation method 
can be used [11]. 

4. THE ASYMPTOTIC FORMS OF THE RADIATION PATTERN AND 
THE AMPLITUDES OF THE SURFACE WAVE 

The scattered field U ~ can be represented at considerable distances from the crack in the form of 
the sum of a cylinddcal diverging wave U ° and surface waves U e. The expression for the cylindrical 
wave 

U° = ~ r  eikr-iTtl 4ttt ( {P ) 

i k s in ~o 
~'(~o) = 2n iksin~(k 4 COS 4 tp- k4)+ v{ (k4 COS4 cP'-k~)i e-ikxc°s~ot~(x)dx + (4.1) 

- t l  
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+ik 2 cos 2 q~sin(ka coscp){~,} - k 2 COS 2 ~0 cos(ka cos (p)[~x ] -- 

-k 3 cos 3 q~ sin(ka cos tp){~} - ik 3 cos 3 q~ cos(ka cos q~)[~]} 

is obtained after al)pJying the saddle-point method to the integral in (2.1). We have introduced the polar 
coordinates r = ~/i~ + y2), q~ = arctg(yo/xo) here. Expressions for the surface waves 

U+ = A= expt  +i×xo _ af-~2 _ k2 yo ) 

{v!o A± = 5~:4 _ 4~-~× 2 _ k~ -~ e 'Vi~(x)dx  - × ~ 2  _ k 2 (cos( a)[L] + 

• i × ~  - k2 (×cos(×a)[~]- sin(×a){~.,. })} 

(4.2) 

are obtained by Uiking the residue at the point X = __.g. 
We will consider the case of a narrow crack, i.e. we will obtain the asymptotic form of the pattern 

and the ampfitudesA -+ for ka ,~ 1. Using the limit (3.6) it can be shown that the off-diagonal elements 
of the matrix A m are asymptotically small. The fight-hand sides and the elements B e and Ct, tend to 
zero whenp > 0. Hence, system (3.2) can be truncated with respect to the first equation for small ka. 
Hence we have (the tilde denotes the leading term of the asymptotic form when ka ,~ 1 and ¥is Euler's 
constant) 

Aoo% -/~b[~x] = xUg(0), -/~o% + Do[~x] = -D~r(0) ,  D2[~] = -D~.g.txx(0) (4.3) 

/}o = I I(X)' 2 2 o 

A = l n k a + y ,  I =  I d~. (4.4) 
4 -~ I(L)3f-~- - k 2 

When oscillations of the system are excited by a plane wave (1.5) incident from the acoustic half- 
space, the right-hand sides of the system of equations (4.3) depend on the angle of incidence %. It can 
be shown that the constants {~} and {~} are bounded, while the coefficients of expansion (3.1) are 
asymptotically small when p > 0. By calculating the coeftieient 00 and the constants [~] and [~] from 
(4.3), using the accurate expressions (4.1) and (4.2), we obtain asymptotic expansions of the radiation 
pattern and the amplitudes 

xP(~,q)o) i k2sin(psin(Po{k_~o 6 = COS2 @ cOs2 g0 - k~ c°s3 ~ 0cOs3 ~00 + 
r¢ L(cp)L(cPo ) D 2 

k2~o 1 ~2LI ((p)Ll ((po) _/i; (c0s2 ~oL1 (~00) + L1 (~0) cos2 (po) + 
+'~00 Do 

k B ~  
+--~--o2 cos ~ocos 2~o o +... 

2ksin~00 l ~x x 2 ~ _ k 2  k" , ~  3 
C(o0) S~ 4 4k2x2-k  4 [ O 0 COS2tp0"t-~2*- ~ k" c°$3~00+ A+= 

- - -  0 2  

l ~.q(~Oo)_k2 ~o cos2~0 ") 
o0 1 +.. 

LI (~0o) = k4 c°s4 gO -- k4 

(4.5) 

The function L is defined in (1.6). 
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It follows from the second formula of (4.4) that the terms containing l/A00 are correction terms with 
respect to the small parameter/ca. 

For the case of the scattering of a surface wave 

U i = exp(i×x- ~ )  

the asymptotics have the form 

(4.6) 

1 ×ksinq~ { x 2 . ~ _  k2 ~_0 3 cos 2 cos3 
W(tp) = 2~ vL(q)) D 2 

X(~;2 _k 2) f x2 4 
A~ = i ( 5 × " - ' - ~ x ~ i r k ~ ) v  l Do - D2 

Aool ( ~ xznv DoB°)( /)0x2 ) } (4.7) 4 -  _ ÷ .  

The asymptotic expansions (4.5) and (4.7) for the fundamental characteristics of the scattered field 
contain special integrals/, Do, D2 and Bo, which depend on the parameters of the plate and of the acoustic 
medium. In the case of a thin plate (kh ~ 1) the integrals can be simplified and dearer  formulae are 
obtained which are given in the next section. 

5. D I S C U S S I O N  OF THE RESULTS AND C O N C L U S I O N  

Note that the leading terms with respect to the parameter ka of the first asymptotic expansion (4.5) 
are identical with the asymptotic form obtained in [1] for the point-crack model. The correction terms 
depend on the crack width 2a and we will analyse their contribution to the asymptotic form below. 

When constructing the asymptotic forms of the scattered field we assumed that only one parameter 
(ka) is small. The remaining parameters of the system were assumed to be of the order of unity. With 
these assumptions and for an arbitrary angle of incidence 90, the characteristics of the field scattered 
by a narrow crack turned out to be close to the characteristics of the field scattered by a point crack. 
At the same time, if a plane wave is incident orthogonally on the plate, the two leading terms in (4.5) 
disappear and terms of the order of i/In (ka) make the main contributions to the asymptotic form. Hence, 
the point-crack approximation cannot be used in the case of the incidence of a plane wave at angles 
close to re/2 (namely, when [ 90 - ~ 2  [ < l~/(I In (ka) 1)). 

As has been shown, the coefficients of the asymptotic expansions depend on the parameters of the 
plate and of the acoustic medium. We will introduce the dimensionless parameters 

p=12(l-ci2)PocZ / E, d = P 0 / p  

where c is the velocity of sound in the acoustic haft-space, while the remaining quantities were introduced 
in Section 1. In terms of these parameters and the parameter e = kh we have 

vh 5 = pe 2 , kah 4 = p I de. 2 

The asymptotic expansions of the characteristics of the scattered field for the point model when 
e "~ 1 were obtained in [1]. It can be shown that the formulae derived in [1] hold if 

e ~dS t2p  -~ ,  e ~ PY3 (5.1) 

The main factor when obtaining these asymptotic forms is the analysis of the dispersion equation 

l ( X ) h '  = - p / - - = 0 
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for small e assumJllg that the parametersp and d are of the order of unity. In this case the roots of the 
symbol 1(~) on both sheets of the two-sheet Riemann surface Z are situated approximately at the vertices 
of a right pentagon 

xj  = +h-lpge2~'ij/se ~5, j = O, !,2,3,4 (5.2) 

The root ~0 is the wave number of the surface wave and was denoted above by x. Using (5.2) the 
integrals occurring in the asymptotic form (4.5) can be evaluated by reduction to the sum of residues 
(see Ill) 

I=-3~i5v' B°=v-~Tr(5+-~-0213 5 ~ - ~ r 5 - ~ " ~ - ] ]  

D o :  2-~/(l-e2'ats}-',5v/5 - , /)2= 5v~(1-e6'ti/5) -' (5.3) 

Substituting (5.3) into the first asymptotic expansion (4.5), it can be seen that the term proportional 
to A0~ 1 and which gives the correction with respect to the parameter ka is the leading term with respect 
to the parameter E. In fact, the ratio of the patterns in the point model and in the narrow-crac k model 

8/5 1 is of the order of ~" ln(ka). For the amplitudes of the surface waves, the term containingA~i is also 
the leading term with respect to the parameter e. Hence, even for non-orthogonal incidence the terms 
corresponding to the point model of the crack only predominate for very small values of ka, namely, 

--8/5 :< --4/5 ka ,~ exp (--e ) in the asymptotic form of the diagram and ka ,~ (--¢ ) in the asymptotic form of the 
surface-wave ampltitudes. The correctness of the model investigated here for such narrow cracks is 
doubtful and reqtfires additional investigation. However, if ka > e =- kh, the narrow-crack model can 
be used but the point-eTack model obviously cannot. 

For non-exponentially small ka terms which are not present in the point model make the main 
contribution to the; asymptotic forms of the scattered-field characteristics. These terms are as follows: 

FE 2 n -5 iA  . . = 2 ~ e n i / 5 r c i + 5 A  B2 n2 
• (tp, c p 0 ) = ~ - ~ s m ~ p s m t P 0 ,  A+ d B 2 sinq~°' = +25A2 (5.4) 

It can be verilied that the asymptotic forms (5.4) satisfy the optical theorem [12]. Calculations show 
that the major pater of the energy scattered by the crack is carried by the surface waves. The effective 
scattering cross-section has the asymptotic form 

20n  2 ~h 
Y~(CPo) = B-"'T- d 2 sin2 (P0 (5.5) 

The analysis of ~te applicability of the point model of a crack given above was based on a consideration 
of the excitation of a spatial-wave system. We will now consider the ease of the incidence of a surface 
wave. The asymptotic form forA_+ in (4.7) leads to the expression 

a+=ll, e6 "'l 
_ - B 2 

(5.6) 

The first two terms correspond to the point model and are leading terms. The correction in (5.6) is 
1/I ln(ka) [ times less. Hence, the point-crack model gives correct asymptotic forms of the surface wave 
process. 

The asymptotic iorms were investigated assuming that (5.1) holds. If this is not the case, a numeri- 
cal calculation of the integrals Do, D2, B0 and I will be necessary. 
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